Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.
Prove [2^(2m +1) + 1] mod 3 = 0?
2^2m - 1 = (2^m +1)(2^m -1)
hence
2^m -1 , 2^m, 2^m + 1 are sequential & 2^m not div 3
so
2^m + 1 or 2^m-1 is div 3
hence
2^2m - 1 is div 3
2(2^2m - 1) == 2^(2m +1) -2 is div 3
so
2^(2m +1) -2 + 3 == 2^(2m +1) + 1
2 réponses
- Anonymeil y a 1 décennieRéponse favorite
Note that if 2^(2m + 1) + 1 ≡ 0 (mod 3), then 2^(2m + 1) + 1 is divisible by 3.
Then, we have:
2^(2m + 1) + 1
= 2*2^(2m) + 1
= 2*4^m + 1
= 2*4^m + 3 - 2
= (2*4^m - 2) + 3
= 2(4^m - 1) + 3.
Since a^n - b^n is divisible by a - b for all integers n by the factor theorem. 4^m - 1 = 4^m - 1^m is divisible by 4 - 1 = 3 for all m.
Since 2(4^m - 1) and 3 are both divisible by 3, then 2(4^m - 1) + 3 = 2^(2m + 1) + 1 is divisible by 3 as required.
I hope this helps!
- ?Lv 4il y a 4 ans
If 2 distinctive factor elevated jointly = 0, then one or the two factors are = 0 Set each and each factor = 0 and remedy for x -7x + 3 = 0 -7x = - 3 x = 3/7 a million.2x - 10 = 0 a million.2x = 10 x = 10/a million.2 = 8.333 = 8 a million/3