Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.

Can't wrap my head around Cartesian to Polar?

Hello! I'd preface this by saying that I understand the concepts of cartesian and polar coordinates, but I am experiencing a major brain fart with regards to converting cartesian velocities to polar in relation to velocity fields.

I have attached an image from a video I was watching. What my brain is refusing to understand is how this can be the case.

Surely the i component of r is r*cos(theta). But here the video says that the i component multiplied by cos(theta) is the i component of x.

Something is just not clicking in my brain, and I'm sure it's completely obvious but nevertheless I am very confused.

For context, I am trying to derrive the polar forms of potential functions for a fluid velocity field. But this relies on me understanding that Vr = u*cos(theta), and not the other way around.

Can anyone maths my brain into order? Thanks.

Attachment image

1 réponse

Pertinence
  • Sean
    Lv 5
    il y a 7 mois

    in vector form cartesian  velocities as a function of time are  (f'(t),g'(t)) by standard formula

    x=f(t) = r*cos α

    y = g(t) = r*sin α

    with r and α as functions of t

    x = r(t)*cos α(t)

    y = r(t)*sin α(t)

    dx/dt = r'(t)*cos α(t) - r(t)*α'(t)*sin α(t)

    dy/dt = r'(t) sin α(t) + r(t)*a'(t)*cos α(t)

    As a check consider a particle descending at from (0,1) at a constant velocity of 1 unit down and 1 unit right per second

    (t, 1-t)

    velocity vector

    (1,-1)

    r = sqrt(t^2+ (1- t)^2)

    α(t) = arctan((1-t)/t)

    r'(t)= (2t-1)/sqrt(t^2 + (1-t)^2)

    a'(t)= -1/t^2 /(1+ ((1-t)/t)^2)

    for t=1/2

    sin is  1/sqrt(2) = sqrt(2)/2

    cos is 1/sqrt(2) = sqrt(2)/2

    r(t) is  sqrt(1/2)

    r'(t) is 0

    α'(t) is -2

    dx/dt = sqrt(1/2) *-( -2*sqrt(2)/2) =sqrt(1) =1

    dy/dt = sqrt(1/2) * -2*sqrt(2)/2 = -sqrt(1) = -1

    or (cos theta(t),sin theta(t)) for constant angular motion

    velocity (-sin theta(t) ,cos theta(t))

     

    r = 1

    theta = t

    theta (t) = t

    theta'(t) =1

    for t = pi/4

    dx/dt = -1*1*sin theta = -1/sqrt(2)

    dy/dt = 1*1*cos theta = 1/sqrt(2)

Vous avez d’autres questions ? Pour obtenir des réponses, posez vos questions dès maintenant.