Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.

Scythian1950 a posé la question dans Science & MathematicsMathematics · il y a 8 ans

Prove this geometric mean?

Given a and b, prove that for maximum angle Φ, c = √(ab) without using calculus. See diagram:

http://i254.photobucket.com/albums/hh120/Scythian1...

Mise à jour:

Yes, b is the entire segment. I should had made that more clear.

Mise à jour 2:

See revised diagram:

http://i254.photobucket.com/albums/hh120/Scythian1...

"b" is the entire vertical segment.

Mise à jour 3:

Quadrillerator, can you edit your answer, changing "a+b" to "b"?

1 réponse

Pertinence
  • il y a 8 ans
    Réponse favorite

    I've revised the 2nd paragraph to work with the lengths in the second image, per your request:

    First I observe that for positive x and N, x+N/x is minimized when x=√N.

    This is easy to see if we rewrite x+N/x = (√x - √N/√x)² + 2 and since the square term is not negative, the expression is minimzed when the square term is 0, which happens only for x=√N.

    Now I note that Φ = arctan(b/c) - arctan (a/c).

    Remembering that tan(x-y) = (tan(x) - tan(y)) / (1 + tan(x) tan(y)) gives

    tan (Φ) = (b/c - a/c) / (1 + ab/c²) = (a+b) / (c + ab/c),

    and since the tangent is an increasing function, it is maximized

    (and hence Φ is maximized) when the denominator in (a+b) / (c + ab/c)

    is minimized, which, by the prior paragraph, happens when c² = ab.

Vous avez d’autres questions ? Pour obtenir des réponses, posez vos questions dès maintenant.