Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.
Triangle Inequality?
Let a, b, and c be the sides of a triangle and S its area. Prove
a^2 + b^2 + c^2 >= (4S)sqrt(3).
Where does equality hold?
Hi Madhukar,
I have two questions. Where did the line
"=> (b^2 + c^2 - a^2) / 4S + (c^2 + a^2 - b^2) / 4S + (a^2 + b^2 - c^2) / 4S ≥ √3
" come from?
And could you go ahead and prove cotA + cotB + cotC ≥ 3?
Thank you
Sorry that should have been sqrt(3) on the RHS of the inequality above
Duke, your insights on problems never cease to impress me. In particular thank you for posting the reference to the Napoleon triangles problem.
4 réponses
- MadhukarLv 7il y a 1 décennieRéponse favorite
It can be proved that for ΔABC,
cot A + cot B + cot C ≥ √3
=> (b^2 + c^2 - a^2) / 4S + (c^2 + a^2 - b^2) / 4S + (a^2 + b^2 - c^2) / 4S ≥ √3
=> a^2 + b^2 + c^2 >= (4S)√3.
Equality holds for a = b = c (because, then cotA + cotB + cot C = √3.)
cotA = (b^2 + c^2 - a^2) / 4S, etc. follow from the formulae of area of triangle which you may get in your text-book in the chapter on properties of triangle.
PROOF OF: cotA + cotB + cot C = √3
For ΔABC, A + B + C = π
=> tan(A + B) = tan(π - C)
=> (tan A + tan B) / (1 - tan A tan B) = - tan C
=> tan A + tan B + tan C = tan A tan B tan C
(dividing by tan A tan B tan C)
=> cot B cot C + cot C cot A + cot A cot B = 1 ... ( 1 )
Now, (cot A - cot B)^2 + (cot B - cot C)^2 + (cot C - cotA)^2 ≥ 0
=> 2(cot^2 A + cot^2 B + cot^2 C) - 2(cot A cot B + cot B cot C + cot C cot A) ≥ 0
[cancelling 2 and using the equation ( 1 )]
cot^2 A + cot^2 B + cot^2 C ≥ 1
=> cot^2 A + cot^2 B + cot^2 C + 2(cot A cot B + cot B cot C + cot C cot A) ≥ 3
[Again using equation ( 1 )]
=> (cot A + cot B + cot C)^2 ≥ 3
=> cot A + cot B + cot C ≥ √3
- DukeLv 7il y a 1 décennie
This is the so called Hadwiger's inequality /a Swiss mathematician/ and there are many ways to prove it. I'll suggest a proof, relating this problem to another interesting one - concerning Napoleon's triangles - please follow the link to the Wiki article below:
http://en.wikipedia.org/wiki/Napoleon_theorem
The 1st sentence in the article is incomplete, it should continue like this:
(***) ". . . the centroids . . , or COINCIDE (in the inward case)."
This theorem can be easily proven circumscribing 3 circles around the triangles ABZ, BCX and CAY on the picture. See also
http://en.wikipedia.org/wiki/Fermat_point
Now let us find the side lengths of both Napoleon's triangles. Let angle ACB = γ is the greatest angle in ABC (at least 60°),
R = abc/(4S) - radius of the circumscribed circle,
sinγ = c/(2R), cosγ = (a² + b² - c²)/(2ab); having
|CB| = a, |CA| = b, the triangle CLM yields:
|CL| = a/â3, |CM| = b/â3 (2/3 of the medians of an equilateral triangles), angle LCM = γ + 2*30°. Imagine the inner Napoleon triangle CL'M', the only difference will be angle L'CM' = γ - 2*30°, so its side length
|L'M'|² = |CL'|² + |CM'|² - 2 |CL'|*|CM'| cos(γ - 60°) =
= a²/3 + b²/3 - 2(ab/3)*(cosγ*cos60° + sinγ*sin60°) =
= a²/3 + b²/3 - 2(ab/3)*(a² + b² - c²)/(2ab)*(1/2) -
- 2(ab/3)*(c/(2R))â3/2 =
= (a² + b² + c²)/6 - abcâ3/(6R) = (a² + b² + c² - 4Sâ3)/6,
/similarly |LM|² = (a² + b² + c² + 4Sâ3)/6/
and |L'M'|² ⥠0 produces the desired result, equality here we have /look (***) above/ iff
L' â¡ M' â¡ N', the latter equivalent to a = b = c.
- UnknownDLv 6il y a 1 décennie
a^2 + b^2 + c^2 ⥠S (4sqrt 3)
c^2 = a^2 + b^2 - 2ab cos C
a^2 + b^2 + (a^2 + b^2 - 2ab cos C) ⥠S (4sqrt 3)
2a^2 + 2b^2 - 2ab cos C ⥠S (4sqrt 3)
a^2 + b^2 - ab cos C ⥠S (2sqrt 3)
c^2 ⥠S (2sqrt 3) - ab cos C
S = (1/2)(ab)(sin C)
c^2 ⥠(sqrt 3)(ab)(sin C) - (ab)(cos C)
c^2 ⥠ab [ (sqrt 3)(sin C) - cos C ]
c^2 ⥠ab [ (sqrt 3)(sin C) - sin (pi/2 - C) ]
(sqrt 3)(sin C) - sin (pi/2 - C) has a maximum of sqrt 3 and a minimum of -1
-1 ⤠(sqrt 3)(sin C) - sin (pi/2 - C) ⤠sqrt 3
-ab ⤠ab [ (sqrt 3)(sin C) - sin (pi/2 - C) ] ⤠ab sqrt 3
c^2 ⥠(ab)(sqrt 3) ⥠-ab
The only way ab sqrt 3 is the maximum, is if the triangle is right triangle.
a^2 + b^2 ⥠(ab)(sqrt 3)
To maximize ab sqrt 3, a = b
a^2 + a^2 ⥠a^2(sqrt 3)
2a^2 ⥠a^2 (sqrt 3)
2 ⥠sqrt 3 is true, therefore our statement is also true.
-----
EDIT:
I screwed up with the Pythagorean Theorem and maximizing part... I'll fix it IF I can.
- Anonymeil y a 1 décennie
use cosine laws a^2 = b^2 + c^2 - 2bc cos A etc & area formula area = (1/2)(base)(height).
Source(s) : unbroken id: fidel_castro_7 source: http://www.geocities.com/phengkimving