Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.

Jane a posé la question dans Education & ReferenceHomework Help · il y a 4 ans

A function is given as f(x)=〖2xe〗^3x?

a: Find all intersections with the x-axis

b: Find the slope function f´(x)

c: Find the tangent at x=1

d: Find the normal to the tangent at x=1

e: Find all stationary points, and state their nature(if any exists)

1 réponse

Pertinence
  • ?
    Lv 4
    il y a 4 ans
    Réponse favorite

    Note: Using * as multiply

    a.

    x = 0 , gives f(x) = 0

    (0,0)

    b/

    f'(x)

    first let u = 3x

    du = 3

    f(u) = (2/3)u*e^u

    multiplication rule

    d(rs)/du = r*ds +s*dr

    so r = (2/3)u

    dr = 2/3

    s =e^u

    ds = e^u

    d(rs) = (2/3)u*e^u+ e^u(2/3)

    Now use chain rule

    df(u) /du = (2/3)u*e^u+ e^u(2/3)

    therefore

    d(f(x)) /dx = df(u)/du * du/dx = 3* ((2/3)u*e^u+ e^u(2/3) )

    d(f(x)) /dx = 2*u*e^u + 2*e^u

    now replace u with 3x

    df(x)/dx = 2*(3x)e^(3x) +2*e^(3x) = (6x + 2)*e^3x

    f'(x) = (6x + 2)*e^3x

    c.

    tangent at x =1

    f(x) at x =1 = 2e^3

    so one point is (1,2*e^3)

    slope = (6*1 + 2 )*e^3 = 8*e^3

    y = 8*e^(3*x) + b

    plug in

    (1,2*e^3)

    y = 8*e^(3*1) +b

    2*e^3 = 8*e^3 +b

    b = -6*e^3

    so tangent is

    y=8*e^3*x - 6*e^3

    d.

    the normal has slope m_norm=-1/(8*e^3)

    y = (-1/(8*e^3))*x +b

    plug in point (1, 2*e^3)

    2e^3 = -1/(8*e^3)*1 + b

    b = +1/(8*e^3) - 2*e^3

    b = (-16e^6 + 1)/2e^3

    normal line

    f_norm(x) = -x/(8*e^3) + (-16*e^6 +1)/(2*e^3)

    e, stationary points

    where the derivative is zero of undefined.

    so first

    f'(x) = (6x + 2)*e^3x

    0 = (6x+2)

    or

    0 = e^3x

    6x + 2 = 0

    6x = -2

    x = -1/3

    f(-1/3) = 2*(-1/3)*e^(-1/3)*(3 ) = -2/3 *e^(-1)

    f(-1/3) = -2/ (3e)

    so the one stationary point is (-1/3, -2/(3*e) )

    this is an absolute and relative minimum

    reason why it is absolute max and relative max

    the derivative is positive from values greater x =-1/3 and it rises

    toward infinity (if you graph points)

    The derivative is negative from x = -infinity to value less x = -1/3

    so it is decreasing. Therefore this must be a relative minimum

    However, by looking at the graph, you can see goes no lower and

    x =+infinity it is rising to infinity

    at x = -infinity is approaching 0.

    e^3x never equals 0, the above is the only stationary point

Vous avez d’autres questions ? Pour obtenir des réponses, posez vos questions dès maintenant.