Le 4 mai 2021, la plateforme Yahoo Questions/Réponses fermera. Elle est désormais accessible en mode lecture seule. Aucune modification ne sera apportée aux autres sites ou services Yahoo, ni à votre compte Yahoo. Vous trouverez plus d’informations sur l'arrêt de Yahoo Questions/Réponses et sur le téléchargement de vos données sur cette page d'aide.

absird
Lv 5
absird a posé la question dans Science & MathematicsMathematics · il y a 1 décennie

Number Theory: Prove n divides 2^n - 2 if...?

Let p be a prime number with p > 3 and let n = (2^(2p) - 1)/3. Prove n|(2^n - 2).

Mise à jour:

Nice solution bboy! I'm going to leave this one open for another day or two in case others wish to post alternative solutions.

Mise à jour 2:

I'll post an alternative solution that uses the same idea as bboy's solution.

We want to show n|(2^n - 2) or 2^n = 2 (mod n). Employing wishful thinking, we can achieve this if we first show 2^(n-1) = 1 (mod n) or equivalently that n|(2^(n-1) - 1).

n - 1 = (2^(2p) - 4)/3 = (2^p - 2)(2^p + 2)/3 = 4(2^(p-1) - 1)(2^(p-1) + 1)/3. Notice that 3|(2^(p-1) - 1) since p-1 is even so 2^(p-1) - 1 is of the form 4^k - 1 = 0 (mod 3). Clearly 2|(n-1). Also observe that p|(2^(p-1) - 1) by Fermat's Little Thm which implies p|(n-1). Thus, 2p|(n-1).

Recall that we want to show

(2^(2p) - 1)/3 | (2^(n-1) - 1).

Note that if a, b are positive integers such that a|b, then x^b - 1 is divisible by x^a - 1 since we could express b in the form b = aj for some integer j, so x^b - 1 = x^(aj) - 1^j = (x^a)^j - 1^j = (x^a - 1)((x^a)^(j-1) + ... + 1).

Letting x = 2, a = 2p and b = n - 1 we get that (2^(2p) - 1) | (2^(n-1) - 1), so (2^(2p - 1)/3 | (2^(n-1) - 1) <--> n | (2^(n-1) - 1) as desired.

1 réponse

Pertinence
  • jordan
    Lv 4
    il y a 1 décennie
    Réponse favorite

    First observe that 3 does not divide n since 9 does not divide 4^p-1; in fact ord_9 (4)=3 and p>3 is never a multiple of 3.

    Obviusly n is odd.

    let t a odd divisor of n (so it is >3), so 2^(2p) = 1 mod(t) so ord_(t){2}| (2p). we must show that 2^n=2 mod(t) iff 2^{n-1}=1 mod(t) iff 2^{(4^p-4)/3}=1 mod(t); but 4^p-4=4(4^{p-1}-1)=0 mod(2p) so ord_(t){2} | (2p) | 4^p-4, so we are done in fact it follows that 2^(n-1)=1 mod(n).

    Nice question!

    --

    ok absird, don't worry, you have all time! :)

    Source(s) : look my inequality,i assure it is very nice :)) http://it.answers.yahoo.com/question/index;_ylt=Ag...
Vous avez d’autres questions ? Pour obtenir des réponses, posez vos questions dès maintenant.